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Abstract. The applicability of one-dimensional (zonally invariant) harmonic and trapped wave theories for Inertia-Gravity

waves to simulations on the mid-latitude β-plane is examined by comparing the analytical estimates in the geostrophic ad-

justment and Ekman adjustment problems with numerical simulations of the linearized rotating shallow water equations. The

spatial average of the absolute differences between the theoretical solutions and the simulations, ϵ(t), is calculated for values

of the domain’s north-south extent, L, ranging from L = 4 to L = 60 (where L is measured in units of the deformation ra-5

dius). The comparisons show that: (i) Though ϵ oscillates with time, its low-pass filter, ϵLP(t), increases with time. (ii) In small

domains, ϵLP(t) in harmonic theory is significantly smaller than in trapped wave theory, while the opposite occurs in large

domains. (iii) The accuracy of the harmonic wave theory decreases with L for 0 < L < 20, while for L > 20 the trend changes

with time. (iv) The accuracy of the trapped wave theory increases with L in the geostrophic adjustment problem, while in the

Ekman adjustment problem, its best accuracy is obtained when L≈ 30. (v) There is a range of L and t values for which no10

theory provides reasonable approximations, and this range is wider in the Ekman adjustment problem than in the geostrophic

adjustment problem. Non-linear simulations of a multilayered stratified ocean show that internal inertia-gravity waves exhibit

the same characteristics as the wave solutions of the linearized rotating shallow water equations in a single layer ocean.

1 Introduction15

The Rotating Shallow Water Equations (RSWE, hereafter) provide a fundamental description of the dynamics of an incom-

pressible fluid in a thin layer in the presence of rotation. This framework is applicable when the horizontal scale of the fluid

motion is much larger than the layer thickness. The linear waves of the RSWE include three wave types: Kelvin waves, Inertia-

Gravity waves (also known as Poincaré waves) and Planetary waves (also known as Rossby waves). Mid-latitude (coastal)

Kelvin waves occur in the presence of an ocean boundary, while all three wave types are generated in response to atmospheric20

forcing, such as wind stress, or due to local perturbations in the ocean’s velocity or surface height. These waves are tradition-

ally classified into two main categories based on their frequencies. The first category comprises the high-frequency Kelvin
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and Inertia-Gravity waves, which are rotationally modified gravity waves. The second category includes the low-frequency

Planetary waves, which originate as perturbations respond to the latitudinal variation of the Coriolis parameter [see, e.g., Gill

(1982), Pedlosky (1987), Cushman-Roisin and Beckers (2011), and Vallis (2017)].25

In the classical harmonic wave theory in mid-latitudes, the meridional structure of the waves’ amplitude is described

by harmonic functions, i.e., sine, cosine, or exponential functions. This simple theory provides accurate wave solutions

when the Coriolis frequency is assumed constant on a plane tangential to the spherical Earth at some latitude ϕ0 (i.e.,

f = 2Ωsin(ϕ)≈ f0 = 2Ωsin(ϕ0), where Ω is Earth’s frequency of rotation). This model is referred to as the f -plane ap-

proximation. In contrast, when the Coriolis frequency is assumed to vary linearly with the meridional coordinate y (i.e.,30

f = f0 + βy, where β = 2Ωcos(ϕ0)/R is constant, where R is Earth’s mean radius), the model is referred to as the β-plane

approximation. On the β-plane, the harmonic wave theory provides only approximate solutions. A detailed derivation of mid-

latitude harmonic waves can be found in the textbooks mentioned earlier in this section. Note that this harmonic structure of

waves in mid-latitudes differs substantially from that on the equatorial β-plane where ϕ0 = 0 which yields wave structure that

is described by the Hermite functions (Matsuno, 1966) that are not a limiting case of the harmonic structure when ϕ0 → 0.35

Several observational and numerical studies highlight the limitations of the harmonic wave theory in accurately describing

the basic features of mid-latitude Rossby waves. For example, Chelton and Schlax (1996) and Osychny and Cornillon (2004)

demonstrate that the phase speed of observed long Rossby waves is greater than that of harmonic Rossby waves, with the

difference in phase speeds increasing with latitude. Consistent with the observations, Aoki et al. (2009) used a high-resolution

ocean general circulation model (OGCM) and showed that the phase of the simulated Rossby waves propagates faster than40

predicted by the harmonic wave theory.

Due to their relatively fast phase speed, Poincaré waves in the ocean are harder to observe compared to Rossby waves. Yet,

reports of Poincaré wave observations were documented in the literature and they have been compared with analytical solutions

and numerical simulations. For example, internal Poincaré waves were observed in Lake Ontario following a storm on 9 August

1972. Simons (1978) analyzed these observations and showed that both analytical and numerical solutions in idealized setting45

exhibit similar characteristics to the observed wave-fronts, e.g., the offshore propagation speed and the periodic recurrence

with near-inertial periods. Simons (1978) also showed that the basic kinematics of the downwelling front could be simulated

using a simple two-layer model.

An alternate theory, the trapped wave theory, was recently developed for both Poincaré and Rossby waves in wide domains

on the mid-latitude β-plane [Paldor et al. (2007); Paldor and Sigalov (2008); Paldor (2015), see details in Sec. 3 below]. These50

waves are called trapped since, in contrast to the harmonic waves, they are not spread over the entire meridional domain.

Instead, they decay monotonically with latitude from their single maximum that is located near the equatorward boundary

for low modes. The relevance of the trapped wave theory to the ocean was confirmed by satellite observations in the Indian

Ocean (De-Leon and Paldor, 2017). Idealized numerical simulations carried out in Gildor et al. (2016) and Yacoby et al. (2023)

demonstrate that the harmonic wave theory provides accurate approximations for waves only in domains of a small north-south55

(i.e., meridional) extent, while the trapped wave theory does so in domains of large north-south extent. The results reported by

Yacoby et al. (2023) also show that the transition from a small extent to a large extent depends on the meridional wave mode.
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Thus, the distinction between "small" and "large" domains is unclear in the context of initial value problems that involve the

superposition of several wave modes.

The present study examines the applicability of the harmonic and trapped wave theories to zonally-invariant simulations on60

the mid-latitude β-plane. The examination is carried out by deriving harmonic and trapped depth-independent wave solutions to

two known physical problems and comparing these solutions with the temporal evolution in numerical simulations of a single

layer and multilayered ocean. The physical problems considered here are the geostrophic adjustment problem [see, e.g., Gill

(1976, 1982), Blumen (1972) and Yacoby et al. (2021, 2023, 2024)] and the Ekman adjustment problem that results from the

addition of a constant zonal forcing to the RSWE [see, e.g., Charney (1955), Gill (1982, Sec. 10.9) and Yacoby et al. (2024)].65

In both problems, the waves are the key mechanism in the transformation from the unbalanced initial state to a balanced (i.e.,

steady) final state. However, the forces that drive the waves are different in the two problems. In the geostrophic adjustment

problem, the waves are generated by an initial disturbance (sea surface height anomaly in the case discussed here), while in

the Ekman adjustment problem, the waves are generated by wind stress. The assumption of no zonal variations eliminates the

Rossby and Kelvin waves from the problem, leaving Poincaré waves (which have not been studied as intensively as Rossby70

waves) as the sole wave type and the focus of the present study. Under this assumption, the harmonic wave solutions on the

β-plane are identical to those on the f -plane. Thus, a comparison between harmonic and trapped wave theories can also be

interpreted as a comparison between exact wave solutions on the f -plane and approximate trapped wave solutions on the

β-plane.

This paper is organized as follows: Sec. 2 presents the governing equations and the set-up of the two physical problems.75

Sec. 3 briefly derives the general solutions for zonally-invariant harmonic and trapped Poinceré waves, and these solutions are

applied in Sec. 4 to the geostrophic adjustment and the Ekman adjustment problems. In Sec. 5, the harmonic and trapped wave

solutions are compared with idealized numerical simulations of a single layer ocean. In Sec. 6, the idealized simulations are

compared with non-linear simulations of a multilayered stratified ocean. Section 7 addresses the relevance of the harmonic and

trapped wave solution to observations. The paper concludes in Sec. 8 with a discussion of the results and their implications.80

Since this study focuses on wave solutions for the meridional velocity, the solutions for the zonal velocity and sea surface

height are provided in Appendix A.

2 Set-up of the problems

The two physical problems studied in this work – the geostrophic adjustment and the Ekman adjustment – share a common

mathematical set-up in the homogeneous part of the differential equations and in the boundary conditions. In contrast, the85

inhomogeneous term of the differential equation and the initial conditions differ in the two problems. The details of the math-

ematical set-up in each of these problems are described in this section.
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2.1 Governing equations

The zonally invariant, vertically averaged linearized RSWE in a surface layer of mean uniform thickness H forced by a constant

(in time and space) zonal wind stress, τ0, are:90

∂u

∂t
− f(y)v =

τ0

ρH
, (1)

∂v

∂t
+ f(y)u =−g

∂η

∂y
, (2)

∂η

∂t
+ H

∂v

∂y
= 0, (3)

where u and v are the vertically averaged velocity components along the x (zonal) and y (meridional) coordinates, respectively,

η is the deviation of the fluid height from its mean value H , ρ is the fluid density, and g is the gravitational acceleration (or the95

reduced gravitational acceleration when the fluid is stratified). As mentioned above, on the mid-latitude β-plane the Coriolis

frequency is given by:

f(y) = f0 + βy = 2Ω
(

sin(ϕ0) +
cos(ϕ0)

R
y

)
(4)

where R and Ω are Earth’s mean radius and frequency, respectively [see, e.g., Gill (1982, Sec. 12.2), Pedlosky (1987, Sec. 3.17

and Chapter 6), Cushman-Roisin and Beckers (2011, Sec 9.4), and Vallis (2017, Sec. 2.3)].100

2.2 Domain configuration and boundary conditions

The study of wave solutions of the zonally invariant (x-independent) linearized RSWE equations (1)-(3) in a meridional do-

main, y ∈ [0,L], where L is the domain’s meridional extent requires the application of boundary conditions. In both problems,

the boundary conditions at the domain’s boundaries are the vanishing of the normal velocities, i.e.:

v(y = 0) = 0 = v(y = L) (5)105

2.3 Initial conditions and wind forcing

In both problems, the fluid is assumed to be initially at rest, i.e.:

u = 0 = v at t = 0. (6)

In the geostrophic adjustment problem, the wind stress, τ0 on the RHS of Eq. (1) is set to zero and the initial surface height

disturbance is given by:110

η =−η0 sgn(y− y′), (7)

where η0 is the initial disturbance amplitude, sgn(z) is the sign function, and y′ is the initial location of the initial discontinuity

(front) in fluid height, i.e.:

η(t = 0) =





+η0, for 0≤ y < y′,

−η0, for y′ < y,
(8)
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In the Ekman adjustment problem, the initial surface height disturbance is set to zero, i.e., η(t = 0) = η0 = 0, in Eqs. (7) and115

(8).

2.4 Nondimensionalization

To reduce the number of free parameters in Eqs. (1)-(3), we introduce nondimensional variables, which are temporarily denoted

with asterisks. The scaling we use is:

t∗ = f0t,120

(x∗,y∗) =
1

Rd
(x,y),

where Rd =
√

gH/f0 is the radius of deformation. In contrast to these nondimensional variables that are common to the two

problems, the scaling of η∗ and (u∗,v∗) must be chosen differently for the geostrophic adjustment problem (where τ0 = 0) and

the Ekman adjustment problem (where η0 = 0). The scaling for the geostrophic adjustment problem is:

η∗ =
1
η0

η,125

(u∗,v∗) =
H

η0

1√
gH

(u,v),

while for the Ekman adjustment problem the scaling is:

η∗ =
ρf0

√
gH

τ0
η,

(u∗,v∗) =
ρf0H

τ0
(u,v).

With these nondimensional variables, Eqs. (1)-(3) become:130

∂u∗

∂t∗
− (1 + by∗)v∗ = δi0, (9)

∂v∗

∂t∗
+ (1+ by∗)u∗ =−∂η∗

∂y∗
, (10)

∂η∗

∂t∗
+

∂v∗

∂y∗
= 0, (11)

where δi0 is the Kronecker delta. The Ekman adjustment problem is defined by i = 0 so the non-dimensional wind stress

δi0 = 1, while the geostrophic adjustment problem is defined by i ̸= 0 so δi0 = 0 (since τ0 = 0). The differential system that135

describes both problems contains a single free parameter – the "non-dimensional β":

b =
βRd

f0
= cot(ϕ0)

Rd

R
.

The boundary conditions, (5), and initial condition for η0, (7), must also be scaled. Using the same nondimensional variables

straightforwardly yields:

v(y∗ = 0) = 0 = v(y∗ = L∗), L∗ = L/Rd,140
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for both problems, and:

η∗(t∗ = 0) =−sgn(y∗− y′∗), y′∗ = y′/Rd,

for the geostrophic adjustment problem only [since for the Ekman adjustment problem η∗(t∗ = 0) = 0]. Naturally, the boundary

conditions add a second model parameter – L∗ = L/Rd

From this point, we will drop the asterisks to improve the aesthetic of the manuscript. Henceforth, unless otherwise noted145

(e.g., in Sec. 6), all variables (including the parameters L and y′) are nondimensional.

2.5 The Eigenvalue Equations for v

Following the derivation of Gill (1982, Sec. 10.9) on the f -plane, a single equation for v is derived here on the β-plane by

subtracting (1 + by) times (9) and the y derivative of (11) from the time derivative of (10). This straightforward calculation

yields:150

∂2v

∂t2
− ∂2v

∂y2
+ (1+ by)2v =−δi0(1 + by). (12)

In the Ekman adjustment problem (δi0 = 1), Eq. (12) can be solved by dividing v into a time-independent component, v̄,

that solves the inhomogeneous part of Eq. (12), i.e.:

d2v̄

dy2
− (1 + by)2v̄ = (1 + by), (13)

and a time-dependent component, v′, that solves the homogeneous part of Eq. (12):155

∂2v′

∂t2
− ∂2v′

∂y2
+ (1+ by)2v′ = 0. (14)

In the geostrophic adjustment problem (δi0 = 0), the RHS of Eq. (12) vanishes identically. In addition, Eq. (9) with ∂
∂t = 0

leads to v̄ = 0, indicating that v consists solely of a time-dependent component, i.e., v = v′.

These considerations imply that in both problems, the time-dependent component, v′, is determined by Eq. (14). Substituting

v′ = v̂(y)e−iωt (where ω is the frequency of the wave) into Eq. (14) and neglecting second-order terms in by [i.e., the term160

b2y2v̂, noting that second-order terms in y have already been neglected in the first-order expansion of f(y)] yields the following

Schrödinger eigenvalue equation for v̂:

d2v̂

dy2
+ (E− 2by)v̂ = 0 (15)

where

E = ω2− 1. (16)165

is the eigenvalue.
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Note that the only dispersion relation derived from Eq. (16) is that of the super-inertial Poincaré waves:

ω2 = 1 + E. (17)

This restriction to Poincaré waves results from the assumption ∂/∂x = 0 in system (1)-(3) that eliminates Rossby waves for

zero wavenumber in the x-direction. An explicit expression for ω (the dispersion relation) follows the solution of the eigenvalue170

equation (15), which determines both v̂ – the eigenfunction and E – the associated eigenvalue. Trapped waves are described

by solutions of the complete equation, while harmonic waves are described by solutions of an approximate equation derived by

setting 2by = 0 in Eq. (15). A detailed discussion on harmonic and trapped Rossby waves can be found in Paldor and Sigalov

(2008), De-Leon and Paldor (2011), Gildor et al. (2016), and Yacoby et al. (2023). A brief description of harmonic and trapped

Poincaré waves is given in Sec. 3.175

3 Harmonic- and trapped-wave theories

This section describes the two types of wave solutions of Eq. (15). We start with classical harmonic waves in Sec. 3.1 and

proceed to trapped waves in Sec. 3.2. In addition to the solutions for v (that are the main focus of this work) we also provide,

for completeness of presentation, the solutions for η and u in Appendix A.

3.1 Harmonic waves180

Although the classical harmonic wave theory is well-known, its discussion here serves to highlight the differences between this

wave type and the trapped waves presented in Sec. 3.2.

In the harmonic theory, the y-dependent term −2by is neglected in Eq. (15). Considering the boundary conditions (5), the

resulting equation is solved by the harmonic eigenfunctions:

v̂n = an sin
[
π(n + 1)

L
y

]
, n = 0,1, ... (18)185

and the associated eigenvalues:

En =
(

π(n + 1)
L

)2

, n = 0,1, ... (19)

The coefficients an are determined in Sec. 4 based on the initial conditions. Substituting the expression for En in Eq. (17)

yields the dispersion relation for harmonic Poincaré waves:

ω2
n = 1 +

(
π(n + 1)

L

)2

. (20)190

Before moving on to the trapped wave theory we define the normalized harmonic eigenfunctions:

v̂∗n(y) =

√
2
L

sin
[
π(n + 1)

L
y

]
, (21)
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in which the coefficient
√

2
L guarantees that:

< v̂∗n, v̂∗n >=

L∫

0

(
v̂∗n(y)

)2

dy = 1. (22)

The definition of v̂∗n is employed in Sec. 4 to determine the coefficient an in Eq. (18).195

Note that in the absence of zonal variations, the harmonic wave solutions are identical to those on the f -plane.

3.2 Trapped waves

This section presents the trapped wave theory, in which the harmonic wave functions of section 3.1 are replaced by the Airy

functions as was shown in e.g., Paldor and Sigalov (2008), De-Leon and Paldor (2011), Gildor et al. (2016) and Yacoby et al.

(2023).200

In the trapped wave theory, Eq. (15) is transformed to an Airy equation:

d2v̂

dz2
− zv̂ = 0. (23)

by defining

z(y) =−(2b)−2/3
[
E− 2by

]
.

The general solution of (23) is a linear combination of Ai(z), that decays (faster than exponential) for z > 0, and Bi(z), that205

grows (faster than exponential) for z > 0, namely:

v̂ = aAi(z) + bBi(z), (24)

where the coefficients a and b are determined from the initial and/or boundary conditions.

3.2.1 Semi-infinite domains

In semi-infinite domains (L→∞), the boundary condition that v vanishes at infinity implies that the coefficient of Bi (that210

grows to infinity) in Eq. (24) must be 0. Accordingly, using the definition of z(y), Eq. (24) reduces to:

v̂ = aAi
(
− (2b)−2/3

[
E− 2by

])
. (25)

The final step is the application of the wall boundary condition at y = 0 i.e. setting z(y = 0) in the expression of the nth zero

of Ai(z), denoted as ξn, e.g., ξ0 =−2.338, ξ1 =−4.088, etc. (note that ξn are all negative since Ai(z) vanishes only at finite

negative values of z). This condition determines the discrete wave functions:215

v̂n = anAi
[
(2b)1/3y + ξn

]
(26)

with the corresponding eigenvalues:

En =−ξn(2b)2/3. (27)
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Substituting this expression for En in Eq. (16) yields the following dispersion relation for trapped Poincaré waves:

ω2
n = 1− ξn(2b)2/3. (28)220

As in Sec. 3.1 we define the normalized (Airy) eigenfunctions:

v̂∗n(y) =
[

2
2
3

2b
1
3

Ai′(ξn)2
]−1/2

Ai
[
(2b)1/3y + ξn

]
(29)

where Ai′(z) is the derivative of Ai(z). The coefficient of Ai(z) in Eq. (29) guarantee that:

< v̂∗n, v̂∗n >=

∞∫

0

(
v̂∗n(y)

)2

dy = 1.

Note that here the upper bound of the integral is ∞ (and not L as in Eq. (22)) since the trapped wave modes, Ai(z), vanish at225

infinity. The form of v̂∗n given in Eq. (29) is employed in Sec. 4 to determine the coefficient an in Eq. (26).

3.2.2 Large finite domains

Since all Airy wave solutions in Eq. (26) decay to 0 at large y, these solutions can be expected to apply at sufficiently large,

finite, y-domains and not only to semi-infinite domains. Indeed, Paldor and Sigalov (2008); Gildor et al. (2016), and Yacoby

et al. (2023) demonstrate that the trapped wave theory provides an accurate approximation for the waves when the domain230

length, L, is large enough e.g. when:

L > (2b)−
1
3 (2 + ξn) (30)

which guarantees that z(y = L) > 2 so Ai
(
z(y = L)

)
< 0.035 which is sufficiently small to justify the neglect of Bi(z). The

above constraint on L indicates that the higher the wave mode, n (and with it, the absolute value of ξn), the larger the domain

should be for the trapped wave theory to remain valid. However, this condition completely ignores the time variable, which235

may also affect the applicability of the trapped wave theory in large but finite domains.

The condition (30) points to the combined dependence of the β-effect on the domain extent L and Rd. Though the condition

applies to the transition from the harmonic (i.e. the f -plane) wave solutions to the trapped (Airy) wave solutions, it’s implication

is wider and the effect of β on the f -plane dynamics is determined by both L and Rd as was shown in Yacoby et al. (2024).

4 Geostrophic adjustment and Ekman adjustment problems240

The general solutions derived in Sec. 3 are applied in the present section to two physical problems: the geostrophic adjustment

and the Ekman adjustment. The analytical solutions derived here are compared with numerical simulations in Sec. 5.

4.1 Geostrophic adjustment

As mentioned in Sec. 2.5, in the geostrophic adjustment problem, the solution of v contains only a time-dependent component,

i.e., v = v′. Accordingly, Eq. (6) implies that v′(t = 0) = 0 = v(t = 0). Using the normalized eigenfunction for v̂∗n(y) i.e.245
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Eq. (21) for the harmonic wave function and Eq. (29) for the trapped wave function, the complete solution for v′ that satisfies

the initial condition (6) is:

v′ =
∞∑

n=0

a∗nv̂∗n(y)sin(ωnt) (31)

where ωn is given by Eq. (20) for harmonic waves and by Eq. (28) for trapped waves. In order to calculate the coefficients a∗n

an initial condition for ∂v′

∂t has to be derived by substituting into Eq. (10) the initial conditions u = 0, given in Eq. (6), and250

η =−sgn(y− y′), given in Eq. (7), which yields:

∂v′(t = 0)
∂t

= 2δ(y− y′), (32)

where δ(z) is the Dirac delta function (not to be confused with the Kronecker delta on the RHS of Eq. (9), δio). The substitution

of (32) in (31) yields:

∞∑

n=0

ωna∗nv̂∗n(y) = 2δ(y− y′), (33)255

where, according to Sturm-Liouville theory, a∗n is given by:

a∗n =
2

ωn

L∫

0

v̂∗n(y) · δ(y− y′)dy. (34)

Substituting the definitions of v̂∗n(y), Eqs. (21) and (29), in Eq. (34) and solving the integral yields:

a∗n =
2

ωn

√
2
L

sin
[
π(n + 1)

L
y′

]
, (35)

for harmonic waves and:260

a∗n =
2

ωn

[
2

2
3

2b
1
3

Ai′(ξn)2
]−1/2

Ai
[
(2b)1/3y′+ ξn

]
(36)

for trapped waves.

It should be noted that although v in the geostrophic adjustment problem consists only of a time-dependent component, η

and u contain both time-independent and time-dependent components. The time-independent and time-dependent components

of η and u are derived in Sec. A1.265

4.2 Ekman adjustment

In the Ekman adjustment problem the decomposition in Sec. 2.5 of v = v̄ + v′ implies that v̄ ̸= 0 so the initial condition (6)

yields:

v′(t = 0) =−v̄(t = 0). (37)
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Following the approach outlined in Sec. 4.1, the solution for v′ that satisfies condition (37) can be expressed as:270

v′ =
∞∑

n=0

a∗nv̂∗n(y)cos(ωnt) (38)

where v̂∗n(y) is given by Eqs. (21) and (29) and ωn is given by Eq. (20) and (28). The application of condition (37) then implies

that a∗n is given by:

a∗n =−
L∫

0

v̂∗n(y) · v̄ dy. (39)

As mentioned in Sec. 2.5, v̄ is determined by the solution of Eq. (13) subject to the boundary conditions (5). In contrast to the275

integral in Eq. (34), the integral in Eq. (39) cannot be solved analytically since no analytical solution for v̄ has been found.

However, v̄ can be found numerically by employing a boundary value problem (BVP) numerical solver to solve Eq. (13).

Subsequently, the integral in Eq. (39) can be calculated numerically to find a∗n.

The solutions for η and u in the Ekman adjustment problem are provided in Sec. A2.

5 Comparing the analytical results with numerical solutions280

This section compares the analytical solutions derived in Sec. 4 with numerical simulations. The dimensional time-dependent

system (1)-(3) is solved numerically using the Massachusetts Institute of Technology General Circulation Model MITgcm,

see Marshall et al. (1997). The domain is periodic in the zonal direction with walls parallel to the x-axis located at y = 0 and

y = L. The domain’s meridional extent, L, was varied between L = 4 to L = 60 (in units of Rd) and is noted in each case.

Since the differential system involves only variations in t and y (while x-variation is ignored), we set the number of cells in the285

x-direction to 4 to ensure the periodicity in x, so the zonal extent of the domain is 4∆x, where ∆x is the grid spacing. No x

variations were developed in the numerical simulations. The model parameters are summarized in Table 1. The Rossby radius

of deformation, Rd =
√

gH/f0, is set to 30 km – a typical value for the first baroclinic mode in the midlatitude ocean (Chelton

et al., 1998). Note that the model parameters are given in dimensional form. However, the numerical results are presented in

nondimensional form using the scales described in Sec. 2.4.290

In the Ekman adjustment problem, the time-independent component v̄(y) was subtracted from the numerical simulations of

v(y,t). To find v̄ we solved Eq. (13) using scipy’s solve_bvp function. To validate this numerical solution, we employed an

alternative approach that computes v̄ by averaging v over many wave periods. As expected, the solutions obtained from direct

numerical solutions of Eq. (13) were indistinguishable from the long-term averages of v (see discussion and figures in Yacoby

et al. (2024), in particular Sec. IV A 2 and Fig. 2 of that paper). The solutions for v̄ are also used to compute the coefficients of295

the eigenfunctions, a∗n, given by Eq. (39).

In the calculation of the trapped wave solutions, the upper bound of the summation in Eqs. (31) and (38), i.e., the number

of modes summed up, was set to 104. In contrast, in the calculation of the harmonic solutions, the summation of such a large

number of modes introduced numerical errors. Therefore, the number of summed modes was reduced to 500 (this issue is

discussed in Sec. 8).300
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Table 1. Model parameters. In addition to the parameters listed in the table, the Rossby radius of deformation, Rd =
√

gH/f0, was set to

30 km throughout, and the domain’s meridional extent, L, was varied between L = 4Rd and L = 60Rd (the value is always noted).

Equation parameters

(Reduced) gravity, g 0.018 m s−2

Mean ocean depth, H 500 m

Water density, ρ 1000 kg m−3

Coriolis parameter at y = 0, f0 10−4 s−1

Gradient of the Coriolis parameter, β 1.67× 10−11 m−1 s−1

Wind forcing/initial conditions

Geostrophic adjustment Ekman adjustment

Wind stress amplitude, τ0 0 N m−2 0.05 N m−2

Initial disturbance amplitude, η0 1 m 0 m

Location of the initial front, y′ L/2 —

Numerical parameters

Time step, ∆t 0.5 s

Grid size, ∆y 50 m

5.1 Results

The results in this section are presented in four figures, structured as follows. For each problem (the geostrophic adjustment

and the Ekman adjustment) we display the solution of v′(y,t) = v(y,t)− v̄(y) for narrow (L = 4) and wide (L = 60) channels.

Each figure compares the simulated v′(y,t) (depicted by black lines) with the analytical solutions of v′ derived for harmonic

(red lines) and trapped (blue lines) waves. The figures show snapshots of v′ at intervals of 6 time units. Although each of the 4305

cases (2 problems and 2 channel widths) exhibits different leading frequencies, we chose to maintain intervals of 6 time units

in all 4 figures to ensure a uniform structure for displaying the results.

Before presenting the results, it is worth noting that in fixed time snapshots, the differences between simulations and an-

alytical solutions, as well as the differences between the two analytical solutions, can result from two reasons: The first is

the disparities between the spatial structures (i.e. the eigenfunctions) of the harmonic, trapped, and simulated waves and the310

second is differences between the frequencies (i.e. the eigenvalues) of the harmonic, trapped, and simulated waves (since the

difference might be smaller/larger at an earlier/later time). Both contributing factors should be considered in explanations of

the differences between different cases.
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Figure 1. The meridional velocity, v(y,t) = v′, in the geostrophic adjustment problem for L = 4. Black lines: Numerical simulations; Red

lines: Analytical harmonic waves; Blue lines: Analytical trapped waves.
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Figure 2. As in Fig. 1 but for L = 60.
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Figure 3. The time-dependent component of the meridional velocity, v′ = v(y,t)− v̄(y), in the Ekman adjustment problem for L = 4. Black

lines: Numerical simulations; Red lines: Analytical harmonic waves; Blue lines: Analytical trapped waves.
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Figure 4. As in Fig. 3 but for L = 60.
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Fig. 1 shows v′ in the geostrophic adjustment problem for L = 4. The agreement between the harmonic wave solutions (red

lines) and the numerical results (black lines) is acceptable up to t ⪅ 40 while the trapped wave solutions (blue lines) are entirely315

irrelevant to the numerical results. Beyond t = 40 the simulated waves deviate appreciably from the anticipated structure of

harmonic waves. The discrepancy between the two is particularly noticeable in the center of the channel at t = 42 and t = 54.

We hypothesize that this appreciable difference between the harmonic wave structures and the numerically simulated waves

is due to a slight difference between the harmonic and numerical frequencies rather than differences in the harmonic and

numerical meridional wave structures. In addition to the discrepancy between the harmonic and the numerical frequencies, we320

also observe a difference in the amplitudes of harmonic and simulated waves at the wave-fronts. The wave-fronts of harmonic

waves are larger and sharper compared to those obtained from the simulations, which is particularly noticeable near the domain

boundaries at t = 18,30,42, and 54, and at the center of the domain at t = 48. This difference between the theory and the

simulations is likely due to the dissipation applied in the MITgcm that reduces the energy contained in the short wave limit. At

lower resolutions of both y and t the gap between the theory and simulation at y = 2 evident at t = 48 occurs earlier and the325

gap at t = 48 is larger by a factor of about 2.

Fig. 2 shows v′ in the geostrophic adjustment problem for L = 60. The harmonic wave solutions (red lines) differ substan-

tially from the numerical results (black lines), except near the wave-fronts. In contrast, there is a very good agreement between

the trapped wave theory (blue lines) and the numerical results up to t = 30. At t = 30, the wave-fronts reach the domain bound-

aries and are reflected towards the center of the domain. This reflection is observed in the numerical results and the harmonic330

wave solutions. However, in the trapped wave solutions, the waves are reflected only from the southern wall (at y = 0). Con-

sequently, a discrepancy between the trapped wave structure and that of the numerical results develops near the northern wall

and propagates southward at the speed of the wave-fronts that equals 1 in non-dimensional units (i.e.
√

gH in dimensional

units, since Rdf0 =
√

gH). This is evident, for example, at t = 48, at which time the northern wave-front, that had reached the

northern wall at t = 30, is located at y = 42 = 60− 18. Thus, the trapped wave theory yields incorrect results between y = 42335

and y = 60. Regardless of the reflection, a small, yet, noticeable difference can be observed between the trapped wave theory

and the numerical results, particularly for t≥ 24 and near the center of the domain. We hypothesize that this difference arises

from a slight difference between the trapped frequencies and the numerical frequencies.

Fig. 3 shows v′ in the Ekman adjustment problem for L = 4. As in the geostrophic adjustment problem (Fig. 1), the agree-

ment between the harmonic waves (red lines) and the simulations (black lines) is good, though, as in Fig. 1, a discrepancy is340

evident between the harmonic and numerical frequencies. In this case, the discrepancy is particularly noticeable at t = 36 and

t = 48. As expected, the trapped wave structure (blue lines) is irrelevant to the simulations at L = 4.

Fig. 4 shows v′ in the Ekman adjustment problem for L = 60. As in the geostrophic adjustment problem (Fig. 2), the

harmonic wave solutions (red lines) differ substantially from the numerical results (black lines). For t≤ 18, the discrepancy

between the harmonic wave theory and the numerical results is more significant in the northern side of the domain than in its345

southern side. This may be related to the fact that the term −2by, which is ignored in the harmonic wave theory, increases

linearly with y. The trapped wave theory (blue lines) matches the numerical results only for small t. As in the geostrophic ad-

justment problem, the mismatch between the theory and the simulations develops at the northern wall and spreads southwards.
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However, in the Ekman adjustment problem, this southward spread begins at t = 0. Consequently, in the Ekman adjustment

problem, the trapped wave theory provides reasonable results for shorter times compared to the geostrophic adjustment prob-350

lem. For example, in the Ekman adjustment problem the trapped wave theory yields reasonable results at t = 48 only for y < 20

while in the geostrophic adjustment problem, it yields reasonable results for y < 30.

5.2 Error estimates

To estimate the difference between each of the wave theories and the numerical simulations, we define a time-dependent

parameter, ϵ(t), in the following manner. The domain y ∈ [0,L] is segmented into 600 points with uniform intervals of L/600.355

For every time, t, (ranging from 0 to 60 at 0.1 intervals) and each y, we compute the absolute difference between the theoretical

v′(y,t), denoted as v′theory, and the numerical v′(y,t), denoted as v′numerical. Subsequently, we compute the spatial average of the

absolute difference for each t. Namely, ϵ(t) is given by:

ϵ(t) =
1

600

600∑

m=0

∣∣∣∣v′theory

(
t,y =

mL

600

)
− v′numerical

(
t,y =

mL

600

)∣∣∣∣ . (40)

For each of the two problems examined, ϵ(t) is calculated separately for the two wave theories i.e. with v′theory calculated from360

the harmonic wave theory and with v′theory calculated from the trapped wave theory.

The dotted lines in Fig. 5 show ϵ(t) as a function of time for the harmonic wave theory (red dotted lines) and the trapped

waves theory (blue dotted lines). The left and right columns correspond to the geostrophic adjustment and Ekman adjustment

problems, respectively. The upper and lower panels show the results for L = 4 and L = 60, respectively. Clearly, ϵ(t) exhibits

significant oscillations, especially when L = 4. To emphasize the overall temporal trend of ϵ(t) and eliminate the fast oscilla-365

tions, we applied a third-order low-pass Butterworth filter to the calculated ϵ(t). The cutoff frequency of the filter was set to

0.05 (i.e., 0.05 ·f0 = 5 ·10−6 s−1 in dimensional units). The low-pass filtered ϵ(t), denoted as ϵLP(t), is shown in Fig. 5 by red

and blue solid curves.

The calculated disparities in Fig. 5 between the wave theories and the simulations underscore the following results:370

For L = 4, the harmonic wave solutions are closer to the numerical solutions than the trapped wave solutions. In both the

geostrophic adjustment problem (upper-left panel) and the Ekman adjustment problem (upper-right panel), ϵLP(t) shows similar

magnitudes and trends. In the harmonic wave theory (red lines), ϵLP(t) increases linearly with time, while in the trapped wave

theory (blue lines), it exhibits low-frequency oscillations that pass the low-pass filter.

For L = 60, the trapped wave solutions are closer to the numerical solutions compared to the trapped wave solutions. In both375

the geostrophic adjustment (lower-left panel) and the Ekman adjustment (lower-right panel) problems, ϵLP(t) shows similar

trends. In the trapped wave theory (blue lines), ϵLP(t) increases linearly with time, while in the harmonic wave theory (red

lines), it exhibits low-frequency oscillations. However, ϵLP(t) is approximately five times larger in the Ekman adjustment

problem compared to the geostrophic adjustment problem in both harmonic- and trapped-wave theories.

In the last measure of error employed here, ϵ(t) is computed for values of L ranging from L = 4 to L = 60 with intervals of380

4 for the two problems and the two wave theories. The resulting low-pass filtered ϵ, ϵLP, are shown in Fig. 6 as a function of
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t and L. In harmonic waves of the geostrophic adjustment problem (upper-left panel) the predominant trend is the rise of ϵLP

with t. For small values of t, ϵLP increases slightly with L until L≈ 30 and then stabilizes. For large values of t, ϵLP exhibits

a local maximum around L≈ 20. In harmonic waves of the Ekman adjustment problem (upper-right panel) the magnitude

of ϵLP is the highest in this figure and the overall trend is an increase of ϵLP with both t and L. In trapped waves of the385

Geostrophic adjustment problem (lower-left panel), ϵLP increases with t but decreases with L. In trapped waves of the Ekman

adjustment problem (lower-right panel), ϵLP increases with t for fixed L but exhibits a local minimum at L≈ 30 for fixed t.

The implications of these results are discussed in Sec. 8.

6 Application to simulations with a 3D-OGCM

In this section, we apply the analytical and semi-analytical insights from the preceding sections to realistic simulations con-390

ducted with the MITgcm, but this time, it is employed as a 3-dimensional Ocean General Circulation Model. Both two-layer

and continuously stratified cases are examined. The two-layer case, derived analytically, provides motivation for the continu-

ously stratified example. Although the continuously stratified case employs the full 3D model with 38 vertical layers, the initial

temperature profile is designed to represent a two-layer ocean. Specifically, the lower layers are initialized with temperature

T1 while the upper layers are initialized with temperature T2 (see details in Sec. 6.2.2). This approach enables a meaningful395

comparison between the two-layer analytical model and the continuously stratified simulations. It is important to note that,

while the analytical two-layer model assumes that the interface between the layers prevents mixing between the upper and

lower layers, the 3D-OGCM includes temperature diffusion, which leads to temperature mixing near the interface between the

layers (i.e., in the thermocline).

The application demonstrates the applicability of our results to the real ocean and it requires an adaptation of the analytic400

results to a baroclinic ocean which is described in Sec. 6.1. Also, the governing equations of the MITgcm have to be tailored

to the particular problems studied here, which is described in Sec. 6.2 along with the match between the numerical simulations

and the analytic conclusions. The equations in a two-layer ocean in Sec. 6.1 and the governing equations of the MITgcm in

Sec. 6.2 are written in dimensional form. Accordingly, all variables in this section are dimensional unless marked by asterisks

(but in the comparison with the previous results at the end of this section we use nondimensional variables, which are denoted405

without asterisks).
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6.1 Extension to a two-layer ocean

The zonally-invariant, linearized, RSWE (1)-(3) are naturally extended to the following equations for the top layer of depth H1

(where the variables are denoted by the subscript 1) in a two-layer ocean :

∂u1

∂t
− f(y)v1 =

τ0

ρ1H1
, (41)410

∂v1

∂t
+ f(y)u1 =−g

∂η

∂y
, (42)

∂h

∂t
−H1

∂v1

∂y
= 0, (43)

where f(y) is given in (4), η is the free surface displacement and h is the (upward) displacement of the interface that separates

the two layers. The continuity equation (43) assumes
∣∣∣∂η

∂t

∣∣∣≪
∣∣∣∂h

∂t

∣∣∣, an assumption referred to as the rigid lid approximation.

The equations for the lower layer (where the variables are denoted by the subscript 2) are:415

∂u2

∂t
− f(y)v2 = 0, (44)

∂v2

∂t
+ f(y)u2 =−g

∂η

∂y
− g′

∂h

∂y
, (45)

∂h

∂t
+ H2

∂v2

∂y
= 0, (46)

where H2 is the mean thickness of the lower layer and g′ = g(ρ2− ρ1)/ρ2 (where ρ1 and ρ2 are the densities of the upper and

lower layers, respectively) is the reduced gravity. The momentum equations (44)-(45) assume (ρ2−ρ1)/ρ2 ≪ 1 while g ρ2−ρ1
ρ2

420

is O(1), an assumption referred to as the Boussinesq approximation. A more detailed derivation of Eqs. (41)-(46) can be found

in Sec. (9.10) of Gill (1982).

The momentum equations can be combined to eliminate η from the equations, which is achieved by subtracting Eqs. (41)-

(42) from Eqs. (44)-(45), respectively. The resulting equations are:

∂U2-1

∂t
− f(y)V2-1 =− τ0

ρ1H1
, (47)425

∂V2-1

∂t
+ f(y)U2-1 =−g′

∂h

∂y
, , (48)

where:

U2-1 = u2−u1, V2-1 = v2− v1.

A continuity equation that involves V2-1 (instead of v1 or v2) is obtained by adding H−1
1 times (43) and H−1

2 times (46), which

yields:430
(

1
H1

+
1

H2

)
∂h

∂t
+

∂V2-1

∂y
= 0,

or:

∂h

∂t
+ He

∂V2-1

∂y
= 0, (49)
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where

He =
H1H2

H1 + H2
.435

The two-layer system (47)-(49) is similar to the single layer system (1)-(3) with two notable differences: (i) The RHS of Eq. (47)

contains a negative sign, whereas the RHS of Eq. (1) does not. (ii) The two-layer system includes two mean heights, H1 and

H2 (or H1 and He), whereas the one-layer system includes only one (H). In other words, the two-layer system introduces an

additional free parameter.

6.1.1 Nondimensionalization440

As in Sec. 2.4, the two-layer system, Eqs. (47)-(49), is nondimensionalized (nondimensional variables are denoted by asterisks)

by scaling the dimensional variables on:

t∗ = f0t,

(x∗,y∗) =
1

R′d
(x,y), R′d =

√
g′He/f0.

For the geostrophic adjustment problem (where τ0 = 0), we also define:445

h∗ =
1
h0

h,

(U∗2-1,V
∗

2-1) =
He

h0

1√
g′He

(U2-1,V2-1),

where h0 the amplitude of the initial interface disturbance (defined in Sec. 6.2.2), while, for the Ekman adjustment problem

(where h0 = 0) we define:

h∗ =
H1

He

ρ1f0

√
g′H1

τ0
h,450

(U∗2-1,V
∗

2-1) =
ρ1f0H1

τ0
(U2-1,V2-1).

With these nondimensional variables, Eqs. (47)-(49) become:

∂U∗2-1

∂t∗
− (1 + b′y∗) V ∗2-1 =−δi0, (50)

∂V ∗2-1

∂t∗
+ (1+ b′y∗) U∗2-1 =−∂h∗

∂y∗
, (51)

∂h∗

∂t∗
+

∂V ∗2-1

∂y∗
= 0, (52)455

where:

b′ =
βR′d
f0

.

Note that although the dimensional two-layer system contains more parameters than the dimensional one-layer system, our

somewhat cumbersome scaling (compared to that employed in Sec. 2.4) guarantees that the non-dimensional two-layer system

contains only one free parameter, exactly as the non-dimensional single layer system.460
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6.2 Numerical simulations of a multilayered ocean

6.2.1 Equations solved

The MITgcm is employed in this section to simulate depth-dependent flow with density determined only by temperature. Vis-

cous and diffusive terms are incorporated into the momentum equations and the temperature advection equation, respectively.

Similar to the set-up in Sec. 2, the domain is periodic in the zonal direction and bounded in the meridional direction by walls465

located at y = 0 and y = L and aligned parallel to the x-axis. A wind-stress momentum forcing is applied in the zonal mo-

mentum equation. However, in this multilayer configuration, the forcing term Fwind is applied only to the momentum equation

for the surface layer, i.e., it is set to zero for the interior layers. While the MITgcm model equations account for x-variations,

the initial conditions employed here (see Sec. 6.2.2) and the periodic boundary conditions in the x-direction ensure that no

x-variation develops in the simulations (which was verified by our numerical simulations). Thus, although the equations of the470

MITgcm include the changes with x, the relevant equations in our problems assume ∂/∂x = 0. These considerations lead to

the following set of equations, written in Cartesian coordinates:

1. Momentum equations:

Du(t,y,z)
Dt

− f(y)v−Ay
∂2u

∂y2
−Az

∂2u

∂z2
= Fwind, (53)

Dv(t,y,z)
Dt

+ f(y)u−Ay
∂2v

∂y2
−Az

∂2v

∂z2
=− 1

ρ0

∂p′

∂y
, (54)475

where

D

Dt
=

∂

∂t
+ v

∂

∂y

and Fwind = τ0
ρ0∆zs

is applied only to the momentum equation for the topmost layer. Here, Ay and Az are horizontal

and vertical viscosities, respectively, p is the pressure and ρ0 is the mean water density [or the reference density in the

equation of state, (57)] and ∆zs is the thickness of the model’s topmost layer.480

2. Conservation of mass:

∂η(t,y)
∂t

+
∂V

∂y
= 0, (55)

where η is the deviation of the sea surface height from z = 0 and V =
∫

vdz (i.e. V is the vertically integrated meridional

velocity in units of m2/s).

3. Equation for the perturbation pressure, p′:485

p′(t,y,z) = gρ0η +

0∫

z

gρ′dz (56)

separated into a barotropic part (due to variations in η) and a baroclinic part (due to variations in density anomaly, ρ′).
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4. Linear equation of state:

ρ′(t,y,z) = ρ− ρ0 =−ρ0α(T −T0) (57)

where α is the thermal expansion coefficient and T0 is a reference temperature that determines ρ0.490

5. An advection-diffusion equation for the temperature, T :

DT (t,y,z)
Dt

−κy
∂2T

∂y2
−κz

∂2T

∂z2
= 0 (58)

where κy and κz are horizontal and vertical diffusivities, respectively. The initial conditions and model parameters are described

in Sec. 6.2.2.

6.2.2 Initial conditions and model parameters495

As in the previous sections (see Sec. 2.3), two types of initial conditions are considered: one for the geostrophic adjustment

problem and the other for the Ekman adjustment problem. In both problems the ocean is initially at rest, its surface height,

η, is zero and it consists of two layers of different temperatures (hence, different densities). The upper (lower) layer has a

temperature of T1 (T2) with T2 < T1 and a mean height of H1 (H2).

In the geostrophic adjustment problem, the forcing term on the RHS of Eq. (53) is set to zero and the initial interface between500

the upper and lower layer, h(y,0) is given by:

h(y,t = 0) =−h0 sgn(y− y′)−H1,

where h0 is the amplitude of the initial interface displacement. Accordingly, as illustrated in Fig. 7, the initial temperature field

is:

T (y < y′,z, t = 0) =





T1, for −H1 + h0 < z ≤ 0,

T2, otherwise,
(59)505

T (y > y′,z, t = 0) =





T1, for −H1−h0 < z ≤ 0,

T2, otherwise.
(60)

while the corresponding initial density anomaly (ρ′) field, determined only by the temperature according to the linear equation

of state Eq. (57), is

ρ′(y < y′,z, t = 0) =




−ρ0α(T1−T0), for −H1 + h0 < z ≤ 0,

−ρ0α(T2−T0), otherwise,
(61)510
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Figure 7. A schematic illustration of the initial temperature profile in the geostrophic adjustment problem, Eqs. (59)-(60)

ρ′(y > y′,z, t = 0) =




−ρ0α(T1−T0), for −H1−h0 < z ≤ 0,

−ρ0α(T2−T0), otherwise.
(62)

In the Ekman adjustment problem, the initial surface height disturbance, h0, is set to zero, i.e.:

h(t = 0) =−H1.
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Table 2. Vertical resolution, ∆z. The model numerical layers are numbered from the sea surface (layer #1) to the ocean bottom (layer #38),

with a total ocean depth of 2 km. ∆z is finer near the interface between the layers, located at z =−1 km (see Table 3).

Layer number ∆z (meters)

1-2, 37-38 200

3-6, 33-36 100

7-9, 30-32 50

10-29 5

Thus, the corresponding initial temperature field is simply:515

T (z, t = 0) =





T1, for −H1 < z ≤ 0,

T2, otherwise.

To avoid confusion between the number of layers in the ocean and the number of vertical grid cells in the model, we

clarify that, although the initial conditions represent a two-layered ocean, the number of vertical grid cells in the numerical

model (which will be termed here ”numerical layers" to distinguish them from the two ”physical" ocean layers) is set to

38. Specifically, in the Ekman adjustment problem, the upper 19 numerical layers were initialized with temperature T1 (and520

anomaly density ρ′1), whereas the lower 19 numerical layers were initialized with temperature T2 (and anomaly density ρ′2).

In contrast, in the geostrophic adjustment problem, the number of numerical layers for the upper and lower layers were varied

for y < y′ and y > y′ to represent an initial disturbance in the thermocline depth. Specifically, for y > y′, the upper (physical)

layer consists of 23 numerical layers, whereas for y < y′, it consists of only 15 numerical layers.

As detailed in Table 2, the grid size in the z-direction, ∆z, in the 2 km deep ocean is not uniform, as a much finer resolution525

is required near the interface that separates the two layers (located 1 km below the surface). According to Table 2, a difference

of 8 numerical layers in the thermocline represents a disturbance of 40 m in the depth of the thermocline.

The model parameters are summarized in Table 3. Note that

He =
H1H2

H1 + H2
= 500 m and g′ = g

ρ2− ρ1

ρ2
= g

α(T1−T2)
1−α(T2−T0)

= 0.018,

which implies R′d =
√

g′He/f0 = 30 km. This value is consistent with the value of Rd used in the 1D solutions presented in530

Sec. 5. This consistency ensures that the results of the current simulations can be directly compared with the previous results

(see Sec. 6.2.3). The domain’s meridional extent was set to L = 1800 km = 60 R′d. Since x-variations are ignored in the

differential system, we set the number of cells in the x-direction to 4 to ensure the periodicity in x (so the zonal extent of the

domain is 4∆x, where ∆x is the grid spacing). To ensure that the signs on the RHS of Eqs. (47) and (1) agree with one another

we set τ0 in the current simulations to be negative (i.e., the wind blows from east to west).535
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Table 3. The parameters used for the 3D-OGCM. In addition to the parameters listed in the table, the Rossby radius of deformation, R′d =
√

g′He/f0, was set to 30 km, and the domain’s meridional extent, L, is set to 60 R′d.

Equation parameters

Gravity, g 9.81 m s−2

Mean/reference density, ρ0 1000 kg m−3

Reference temperature, T0 20◦ C

Thermal expansion coefficient, α 2× 10−4 K−1

Coriolis parameter at y = 0, f0 10−4 s−1

Gradient of the Coriolis parameter, β 1.67× 10−11 m−1 s−1

Horizontal viscosity, Ay 500 m2 s−1

Vertical viscosity, Az 10−2 m2 s−1

Horizontal diffusivity, κy 1000 m2 s−1

Vertical diffusivity, κz 10−5 m2 s−1

Wind forcing/initial conditions

Upper layer temperature, T1 24.6◦ C

Lower layer temperature, T2 15.4◦ C

Upper layer density anomaly, ρ′1 −0.92 kg m−3

Lower layer density anomaly, ρ′2 +0.92 kg m−3

Upper layer mean height, H1 1 km

Lower layer mean height, H2 1 km

Geostrophic adjustment Ekman adjustment

Wind stress amplitude, τ0 0 N m−2 −0.05 N m−2

Initial interface amplitude, h0 20 m 0 m

Location of the initial front, y′ L/2 —

Numerical parameters

Time step, ∆t 50 s

Meridional grid size, ∆y 500 m

Vertical grid size, ∆z See Table 2

28

https://doi.org/10.5194/egusphere-2025-2529
Preprint. Discussion started: 16 June 2025
c© Author(s) 2025. CC BY 4.0 License.



6.2.3 Results

To compare the results of the current, multilayered ocean, simulations with the previous simulations of a single-layer ocean,

we calculate the vertically-averaged meridional velocities in each of the two (physical) layers, i.e.:

v1 =
1

H1

0∫

−H1

vdz, v2 =
1

H2

H1∫

−(H1+H2)

vdz,

where v1 and v2 are the vertically-averaged meridional velocities of the upper and lower layers, respectively. Since the model540

comprises 38 numerical layers, v1 (v2) is numerically computed as the average of the meridional velocities in the upper (lower)

19 layers. To focus on the waves, we subtract the time averages of v1 and v2 from their time-dependent values (v1 and v2) i.e.,

we calculate:

v′1 = v1− v̄1, v′2 = v2− v̄2,

were:545

v̄1 =
1

tend

tend∫

0

v1dt, v̄2 =
1

tend

tend∫

0

v2dt, tend = 60 (in units of f−1
0 ).

For the geostrophic adjustment problem we get v̄1 = 0 = v̄2 which implies v1 = v′1 and v2 = v′2.

The results for the geostrophic adjustment and the Ekman adjustment problems are depicted in Figs. 8 and 9, respectively.

In the figures, v′2 is represented in red, v′1 in blue, and the difference between them, V ′2-1 = v′2− v′1, in dashed-black lines. For

comparison with the 1D simulations, the solid-black lines in Figs. 8 and 9 duplicates of the solid-black lines shown in Figs. 2550

and 4, respectively. To allow a comparison between previous and current results, the results in Figs. 8 and 9 are presented in

nondimensional form (using the scales described in Sec. 6.1.1).

The figures show excellent agreement between V ′2-1 in the multilayered ocean simulations (dashed black) and v′ in the

simple single-layer ocean simulations (solid black) in both problems. However, in the geostrophic adjustment problem (Fig. 8),

discrepancies between V ′2-1 and v′ are observed near the wave-fronts, where waves with a relatively short wavelength exist. We555

hypothesize two reasons for the discrepancies between V ′2-1 and v′: (i) The horizontal viscosity terms added to the momentum

equations in the 3D-OGCM, Eqs. (53)-(54), reduce the energy of short waves in the multilayered ocean, resulting in smoother

wave-fronts. (ii) To accelerate the multilayered ocean simulations, we significantly increased ∆t and ∆y in the 3D-OGCM

(compare Table 3 with Table 1). As mentioned in Sec. 5.1, the sharpness of the wave-fronts decreases as ∆t and ∆y increase.

In addition to the agreement between the single layer and multilayered simulations, the figures clearly indicate that in both560

problems v′1 =−v′2 so V ′2-1 = 2v′2 =−2v′1.

We conclude this section with results not shown in the figures: (i) In both problems, the velocity in the lower layer is uniform

with depth. Thus, the velocity at any depth below the interface equals the vertically averaged velocity of the lower layer, v′2.

(ii) In the geostrophic adjustment problem, the velocity in the upper layer is uniform with depth, as is the velocity in the lower

layer. (iii) In the Ekman adjustment problem, the wind stress (which acts only at the topmost layer) causes a shear of the flow565

29

https://doi.org/10.5194/egusphere-2025-2529
Preprint. Discussion started: 16 June 2025
c© Author(s) 2025. CC BY 4.0 License.



0 10 20 30 40 50 60
0.5

0.0

0.5
t = 0

0 10 20 30 40 50 60
0.5

0.0

0.5
t = 6

0 10 20 30 40 50 60
0.5

0.0

0.5
t = 12

0 10 20 30 40 50 60
0.5

0.0

0.5
t = 18

0 10 20 30 40 50 60
0.5

0.0

0.5
t = 24

0 10 20 30 40 50 60
0.5

0.0

0.5
t = 30

0 10 20 30 40 50 60
0.5

0.0

0.5
t = 36

0 10 20 30 40 50 60
0.5

0.0

0.5
t = 42

0 10 20 30 40 50 60
y

0.5

0.0

0.5
t = 48

0 10 20 30 40 50 60
y

0.5

0.0

0.5
t = 54

Figure 8. The meridional velocity for the geostrophic adjustment problem in multilayered ocean simulations. Red: the vertically averaged

velocity of the lower layer, v2. Blue: the vertically averaged velocity of the upper layer, v1. Dashed-black: V2-1 = v2− v1. Solid-black: the

meridional velocity in one-layer ocean simulations, v (duplicates of the solid-black lines shown in Fig. 2).
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Figure 9. The time-dependent component of the meridional velocity for the Ekman adjustment problem in multilayered ocean simulations.

Red: the vertically averaged velocity of the lower layer, v′2. Blue: the vertically averaged velocity of the upper layer, v′1. Dashed-black:

V ′2-1 = v′2− v′1. Solid-black: the time-dependent component of the meridional velocity in one-layer ocean simulations, v′ (duplicates of the

solid-black lines shown in Fig. 4).
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of the upper layer. We found that the profile of v′(z) in the upper layer depends on the thickness of the model’s topmost layer,

∆zs. However, the vertically averaged velocity v′1 is independent of ∆zs since in a thinner grid layer the effect of the wind

stress in that layer increases (the same wind stress is spread over a thinner layer).

7 Relevance to observations

Observations of the fast Poincaré waves require long and high-resolution in time and, similarly, the distinction between the570

mode structure of trapped and harmonic waves requires high meridional resolution and large meridional extent, both of which

complicate the detection of these waves in the ocean. Presently, observations of Poincaré waves were reported mainly in

lakes, where only harmonic modes can be detected, e.g., Lake Michigan and Lake Ontario (see, e.g., Mortimer, 1977). Indeed,

Gill (1982, Sec. 7.3) cites these observations, emphasizing that the observed Poincaré waves have similar characteristics to

the analytical harmonic-wave solutions of the geostrophic adjustment on the f -plane. Our results imply that the resemblance575

between both numerical and analytical solutions on the f -plane and the observed waves in Lake Ontario is expected, given that

the meridional (south-north) extent of Lake Ontario is∼ 80 km, which should be considered narrow since the results of Figs. 1

and 3 imply that a meridional extent of O(4) radii of deformation is narrow.

Poincaré waves with frequency near the inertial frequency f , known as near-inertial waves, are a dominant mode of high-

frequency variability in the ocean, appearing as a prominent peak that rises significantly above the Garrett and Munk (1975)580

continuum internal wave spectrum (see, e.g., Alford et al., 2016). These waves are frequently observed in oceans and lakes, such

as in the Gulf of Mexico (Gough et al., 2016), Lake Ontario (Schwab, 1977), Lake Michigan (Ahmed et al., 2014), the Gulf of

Lions (Millot and Crépon, 1981), and the northeast Pacific Ocean (D’Asaro et al., 1995). The distinction between near-inertial

trapped and harmonic modes of these near-inertial waves is complicated by the fact that the frequencies of the n = 0 modes

are very close to 1, hence to one another. This can be shown by substituting n = 0 in Eq. (20) which yields ω2 = 1 + (π/L)2585

for the harmonic n = 0 mode while substituting n = 0 (i.e., ξ0 =−2.338) and b = 0.005 in Eq. (28) yields ω2 = 1.1 for the

trapped wave theory. For L = 10 the two types of n = 0 modes yield identical frequencies and for a larger/smaller value of L

the frequency of the harmonic mode is only slightly smaller/larger than that of the trapped mode.

However, the trapped wave solution can be invoked to reproduce an observed phenomenon in the ocean – the linear change

of the meridional wavenumber with time. The observations in the Pacific Ocean reported in D’Asaro et al. (1995) demonstrate590

that following a storm the zonal wavenumber remains constant while the meridional wavenumber changes linearly with time.

Specifically, the meridional wavenumber decreases at a rate of−βt by, first, decreasing the initial wavenumber to zero followed

by a 180◦ phase shift in which the wavenumber becomes negative and increases its absolute value linearly with time (see also

Alford et al., 2016). This phenomenon was explained by D’Asaro et al. (1995) using the following argument: Representing an

inertial wave on the β-plane (where f = f0+βy) as ei(l0y−ft) = ei[(l0−βt)y−f0t] suggests that the initial meridional wavenum-595

ber l0 becomes increasingly negative as βt increases. However, this heuristic argument is mathematically inconsistent since

the ansatz ei(l0y−f(y)t) violates the separation of variable that yields the wave equation for the meridional structure (and the
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dispersion relation). Indeed, the harmonic wave solutions (red lines in Figs. 1-4) do not reproduce the linear time variation of

the meridional wavenumber.

In contrast to the harmonic wave solutions, the trapped wave theory accurately reproduces the linear change of the wavenum-600

ber. To illustrate this, Fig. 10(a) revisits the trapped wave solutions for the Ekman adjustment problem shown in Fig. 4. The

two southern nodal points are highlighted with red dots and the distance between these points, D, provides an estimate of the

meridional wavenumber – l ≈ π/D. As shown in Fig. 10(b), the calculated wavenumber increases linearly with time. A linear

regression analysis yields a slope of 0.0051, which is in excellent agreement with the theoretical value βRd/f0 = 0.005 and

the trend observed by D’Asaro et al. (1995).605

8 Discussion

This work examined the applicability of two wave theories on the mid-latitude β-plane – the harmonic and the trapped wave

theories – to the temporal evolution evidenced in numerical simulations. The examination is based on the derivation of one-

dimensional, zonally-invariant, wave solutions for two physical problems – the geostrophic adjustment and the Ekman ad-

justment problems. The analytical solutions are then compared to numerical simulations conducted using the MITgcm. The610

numerical simulations are assumed to be accurate and the aim in comparing the theories with numerical simulations is to

evaluate the applicability of the idealized theories, rather than the accuracy of the simulations.

The discrepancies between the theories and numerical simulations were quantified using ϵ(t), defined in Eq. (40), focusing

on its low-pass filtered, ϵLP(t). The discrepancies stem from the different approximations. The harmonic wave theory, which

neglects the β effect, becomes less accurate when the meridional domain, L, increases to L = 20, with more complex variations615

beyond this domain size (upper panels of Fig. 6). The trapped wave solutions of the geostrophic adjustment problem, that

account consistently for β but neglect the Bi eigenfunctions, are more accurate as L increases as they better satisfy the better

boundary condition (lower-left panel of Fig. 6). However, in the Ekman adjustment problem, optimal agreement occurs near

L≈ 30 (lower-right panel of Fig. 6).

Intuitively, the increase of ϵLP with L for L > 30 can be attributed to the larger number of wave modes required to accurately620

describe the solution in large domains, whereas the number of wave modes used here was identical at all values L. To test

this hypothesis, ϵLP in the Ekman adjustment problem was recalculated with the number of summed modes equal to 103 and

5× 104 (whereas the number of modes used throughout was 104). Contrary to intuition, the effect on ϵLP of the change in the

number of summed wave modes was insignificant for small t and practically 0 for large t.

Our results clearly demonstrate the failure of the trapped wave theory in small domains. This failure is attributed to two625

reasons. The main reason, which plays a role in both problems, is that the Airy functions Ai(y) can not satisfy the boundary

condition of v′ = 0 at y = L when L is small. The second reason for the failure is that the superposition of Ai(y) modes fails to

satisfy the initial conditions of v. In both cases Bi(y) must be added to the solution in order to satisfy the boundary condition

at y = L or the initial condition of v. This reason contributes to the failure of the trapped wave theory only in the geostrophic

adjustment problem. The failure of the Ai(y) modes to satisfy the initial condition (32) at small domains is demonstrated in630
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Figure 10. The decrease of the meridional wavelength with time. (a) The blue curves replicate the blue curves of Fig. 4, i.e., the trapped wave

solutions in the Ekman adjustment problem at the indicated times, t. The red dots mark the two southern nodal points. The distance between

the two red dots, D, is used in panel (b) to estimate the meridional wave number, l ≈ π/D. (b) Dots: The estimated zonal wavenumber

π/D as a function of time. Dashed line: A linear regression fit. The slope of the regression line is 0.0051≈ βRd/f0 = 0.005 which agrees

very well with the observed trend reported by D’Asaro et al. (1995). The intersection with the ordinate is −0.02, indicating that the initial

wavelength is 314. A 180◦ phase shift occurs at t = 4.
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Figure 11. The derivative of v′ with respect to t at t = 0 in the geostrophic adjustment problem. Left panel: L = 4. Right panel: L = 60.

Red lines: Harmonic waves. Blue lines: Trapped waves. The ordinate of the left panel is truncated at 60, though the maximal value of the

red curve is 184, to ensure the finite values of both curves at y ̸= 2 can be clearly seen. According to Eq. (32), the curves should satisfy

∂v′(t = 0)/∂t = 2δ(y− y′) so the area under the curves should be 2.00. The areas under the red and blue curves are noted in the figure

using red and blue legends, respectively.

Fig. 11 where ∂v′

∂t (t = 0) =
∑N

n=0 ωna∗nv̂∗n(y) is shown for the harmonic waves (red lines) and trapped waves (blue lines)

for L = 4 (left panel) and L = 60 (right panel). As in Figs. 1-4, the number of summed-up modes, N , is set to 500 in the

expansion to harmonic waves and to 104 in the expansion to trapped waves. Except for the blue curve on the left panel, all

curves accurately approximate ∂v′/∂t(t = 0) = 2δ(y− y′) as is evident from the values of the integrals over the curves that

should be 2.0 for a Dirac delta function. The calculated values of the integrals (indicated in the figure using red and blue635

legends) are close to 2. The largest deviation, of about 5%, occurs for trapped waves in small domains which is evident in the

blue curve (and associated legend) on left panel. In contrast to the geostrophic adjustment problem, in the Ekman adjustment

problem, the superposition of Ai modes satisfies the initial condition (37) even when L = 4, as illustrated in the upper-left

panel of Fig. 3.

The failure of the harmonic wave theory in large domains stems primarily from the omission of the β effect (recall: Rossby640

waves are filtered out by the k = 0 assumption) rather than from the limited number of summed harmonic modes (500 compared

to 104 Airy modes). This conclusion is evident upon comparisons with the f -plane simulations, where the summation over

500 harmonic modes produces accurate results, confirming that the harmonic wave theory effectively describes the f -plane

dynamics (results not shown). Errors in the harmonic solutions also stem from the inclusion of modes with tiny amplitudes in

the summation, especially in the Ekman adjustment problem, where the superposition of harmonic modes fails to satisfy the645
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Figure 12. The range of L and t for which the harmonic and trapped wave theories yields ϵLP < 0.1. White: Both theories. Red: Only the

harmonic wave theory. Blue: Only the trapped wave theory. Black: Neither theory.

initial condition for v′, Eq. (37). These errors are less pronounced in the geostrophic adjustment problem but still affect the

wave-front amplitudes.

Though both problems share the same governing equation, Eq. (14), their forcing mechanisms are different. In the geostrophic

adjustment problem waves are driven by localized initial perturbations and for small t < L/2 the trapped wave theory agrees

with the simulations. However, at larger t the neglect of the Bi functions causes discrepancies when the simulated waves are650

reflected from both walls while trapped waves are reflected from the south wall only. In contrast, in the Ekman adjustment

problem, waves are driven by constant wind stress and violate the boundary conditions at y = L from the outset.

In both problems, the discrepancies between the theories and the simulations increase with time. However, for large values of

L the error of the harmonic wave theory is larger in the Ekman adjustment problem than in the geostrophic adjustment problem

(compare the ordinate ranges of the lower panels of Fig. 5). Part of the reason for the higher values of ϵLP(t) in the Ekman655

adjustment problems arises from the higher amplitude of the waves themselves in the Ekman adjustment problem compared to

the geostrophic adjustment problem (compare the ordinate range of Fig. 2 to that of Fig. 4).

Figure 12 summarizes the ranges of L and t where the theories yield acceptable results, defined by ϵLP < 0.1. The colors in

Fig. 12 indicate which theory satisfies ϵLP < 0.1 as a function of L and t using the following color codes: White: both theories.

Red: harmonic wave theory. Blue: trapped wave theory. Black: neither theory. Regions in which neither theory is accurate are660
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wider in the Ekman adjustment problem, reflecting the greater challenges of modeling its dynamics. In both problems, the

trapped wave theory yields ϵLP < 0.1 over larger ranges of L and t compared to the harmonic wave theory. As evident from

the white regions near the ordinates of Fig. 12, both theories satisfy ϵLP < 0.1 for sufficiently small t. This is because the

superposition of harmonic and trapped wave modes in the two problems was selected such that the resulting functions satisfy

the initial conditions. The failure of the Trapped wave theory at large L in the Ekman adjustment problem does not result from665

the small number of modes, as a change in the number of modes (to 103 and 5 ·104) has a negligible effect on ϵLP. This delicate

issue is left for future study.

As argued in Sec. 7 the application of the theoretical results reported here to observations does not include the meridional

structure of the modes and the wave’s spectrum, since under typical conditions these properties cannot be deciphered in obser-

vations. However, laboratory experiments on a rotating table, similar to those reported in Cohen et al. (2010) and Cohen et al.670

(2012), can be carried out to verify the applicability of the theoretical results to carefully designed laboratory experiment.

The results of this work underscore the importance of the radius of deformation in determining the effect of β and the tran-

sition from harmonic waves to trapped waves. The naive view in which the effect of β is determined only by β×Max(y)/f0,

is modified in our results where the β effect is shown to also involve the radius of deformation.

This study expands on earlier works by examining the accuracy of wave theories across both time and a range of domain675

sizes (L-values), rather than focusing solely on two values of L (one small and one large) as was done in Gildor et al. (2016)

and Yacoby et al. (2023). It demonstrates that neither of the existing wave theories provides accurate approximations for the

waves at all (large) times. This underscores the need for a more comprehensive theory that incorporates the β effect while fully

satisfying the boundary conditions. An approach to achieve this goal is to decompose the initial conditions into the basis of the

two Airy functions, Ai and Bi, while satisfying the boundary conditions, based on solutions of the transcendental equations680

that currently have no known solutions.

This paper focuses on zonally-invariant Poincaré waves. However, the approach employed here can also be applied to

zonally-dependent problems e.g., geostrophic adjustment in rotating channels [Gill (1976, Sec. 9), Hermann et al. (1989),

Tomasson and Melville (1992), and Yacoby et al. (2023, Sec. 5)], geostrophic adjustment in closed basins (Johnson and

Grimshaw, 2014), and wind-driven circulation in closed basins [Pedlosky (1965), Pierini (1998), Sura et al. (2000), LaCasce685

(2000), Cessi and Primeau (2001), and Cessi and Louazel (2001)]. The extension of this work to a zonally-dependent setup,

where Rossby waves are also excited, is left for future work.

Code availability. The MITgcm is described in Marshall et al. (1997) and is available at: https://github.com/MITgcm/MITgcm.git. The

input files containing the model configuration and parameters used in this paper are available at: https://doi.org/10.5281/zenodo.14585128

(Yacoby, 2025)690
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Appendix A: The solutions of η and u

A1 Geostrophic adjustment

In the geostrophic adjustment problem, η and u can be divided into time-independent components (η̄, ū) and time-dependent

components (η′, u′).

A1.1 Time-independent components695

According to Eq. (10), the time-independent components η̄ and ū satisfy the geostrophic balance:

(1 + by)ū =−∂η̄

∂y
. (A1)

However, an additional equation must be derived to find η̄ and ū. The derivation of this additional equation outlined here

follows the approach presented in Yacoby et al. (2023). Substituting the continuity equation, Eq. (11), into the y derivative of

Eq. (9) yields:700

∂q

∂t
= bv, q =

∂u

∂y
+ (1+ by)η. (A2)

Substituting the continuity equation once again but this time into the y derivative of Eq. (A2), yields:

∂

∂t

(
∂q

∂y
+ bη

)
= 0. (A3)

This conservation equation indicates that the combination of time-dependent variables within the bracket at time t equals their

initial combination. The initial conditions (6)-(7) imply:705

q(t = 0) =−(1 + by)sgn(y− y′),

and substituting this relation into the time integral of Eq. (A3) yields:

∂2u

∂y2
+ (1+ by)

∂η

∂y
+ 2bη =−2(1 + by)δ(y− y′)− 2bsgn(y− y′). (A4)

The system (A1) and (A4) can be solved numerically by imposing the relevant boundary conditions (see discussion in

Yacoby et al. (2023)) and utilizing a standard BVP solver.710

A1.2 waves

After finding v′, the wave components of u and η, u′ and η′, can be obtained by substituting v′ into Eqs. (9) and (11),

respectively, and integrating these equations with respect to time. This results in:

u′ =−(1 + by)
∞∑

n=0

a∗n
ωn

v̂∗n(y)cos(ωnt) (A5)

38

https://doi.org/10.5194/egusphere-2025-2529
Preprint. Discussion started: 16 June 2025
c© Author(s) 2025. CC BY 4.0 License.



and715

η′ =
∞∑

n=0

a∗n
ωn

dv̂∗n
dy

cos(ωnt) (A6)

where:

dv̂∗n
dy

=
π(n + 1)

L

√
2
L

cos
[
π(n + 1)

L
y

]
,

according to the harmonic wave theory, and:

dv̂∗n
dy

= (2b)1/3

[
2

2
3

2b
1
3

Ai′(ξn)2
]−1/2

Ai′
[
(2b)1/3y + ξn

]
,720

according to the trapped wave theory.

A2 Ekman adjustment

The calculated solutions of v̄ and v′ yields η and u as follows: The substitution of v = v̄ + v′ in Eq. (11) and integration with

respect to t yields:

η = η̄ · t + η′ (A7)725

where:

η̄ =−dv̄

dy
, η′ =−

∞∑

n=0

a∗n
ωn

dv̂∗n
dy

sin(ωnt). (A8)

Substituting v = v̄ + v′ in Eq. (9) yields:

u = ū · t + u′ (A9)

in which:730

ū =
1

1 + by

d2v̄

dy2
, u′ = (1 + by)

∞∑

n=0

a∗n
ωn

v̂∗n(y)sin(ωnt). (A10)

The ū · t term solves solves the inhomogeneous part of Eq. (9), i.e.:

ū− (1 + by)v̄ = 1,

which is equivalent to Eq. (13). The u′ component solves the homogeneous part of Eq. (9), i.e.:

∂u′

∂t
− (1 + by)v′ = 0.735
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